

Fraunhofer-Gesellschaft

Fraunhofer Twin Transition Series

Carbon removals for climate neutrality – A pathway to Europe's decarbonization

September 27, 2023

Pixabav

Carbon removals for climate neutrality - A pathway to Europe's decarbonization

Fraunhofer Twin Transition Series

4 - 16 Introduction by Peter Schossig Fraunhofer Institute for Solar Energy Systems ISE

Setting the scene by Tiemo Wölken

Patron of the webinar, Member of the European Parliament

18 - 22 Expert presentation I "Politics, society and negative emission technologies – a scenario and climate policy analysis" by Vicki Duscha

Fraunhofer Institute for Systems and Innovation Research ISI

23 - 33 Expert presentation II "Life cycle analysis of biochar, BECCS and DACCS and their role in future renewable energy systems" by Saskia Kühnhold-Pospischil

Fraunhofer Institute for Solar Energy Systems ISE

34 - 49 Expert presentation III "Carbon management for climate neutrality - BECCS and PyCCS as key technologies to valorize biogenic residues and waste" by Martin Meiller Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT

The Fraunhofer-Gesellschaft

At a glance

Applied research focusing on key future-relevant technologies and the commercialization of findings in business and industry. A trailblazer and trendsetter in innovative developments.

Introduction

Dr. Peter Schossig

Director "Heat and buildings" Fraunhofer Institute for Solar Energy Systems ISE

Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report

Assessment Report 6: Working Groups I-III Full Report (2021/22)

Synthesis Report (2023)

CO₂ from Land Use, Land-Use Change and

CO₂ from fossil fuels and industry

2000 2019

https://www.ipcc.ch

https://report.ipcc.ch/ar6syr/pdf/IPCC_AR6_SYR_LongerReport.pdf, 31.03.2023

Restricted

Anthropogenic global warming

Climate scenarios

CO₂ emissions for SSP-based scenarios and C1-C8 categories

Temperature for SSP-based scenarios over the 21st century and C1-C8 at 2100

Basically all scenarios that limit warming to 2°C in 2100 include negative emissions.

https://report.ipcc.ch/ar6syr/pdf/IPCC_AR6_SYR_LongerReport.pdf, entnommen am 31.03.2023

Anthropogenic global warming

Negative Emission

The need for negative emissions increases significantly with the residual budget of positive emissions.

https://www.cicero.oslo.no/en/articles/stylised-pathways-to-well-below-2c, 4.9.2018, entnommen 31.03.2023

Carbon Dioxide Removals and Negative Emission Technologies A definition

Carbon Dioxide Removals (CDR) refers to the general process of removing carbon dioxide (CO₂) from the atmosphere or a point source.

Negative Emission Technologies (NETs) are specific CDR technologies or methods aimed to remove CO₂ from the atmosphere for long durations, thus generating "negative emissions."

The gap...

The State of Carbon Dioxide Removal - 1st Edition. The State of Carbon Dioxide Removal. doi:10.17605/OSF.IO/W3B4Z

Negative Emission Technologies

An Overview and Storage Location

Negative Emission Technologies

An Overview and Storage Location

How do BCR and BECCS work?

How does DACCS work?

Predicted market Growth

Predicted market Growth

Carbon Dioxide Removals and Negative Emission Technologies

We need them all – and fast!

No relevant IPCC scenario without huge amount of NET!

NET means really longterm storage of the Carbon, not usage alone

Wide variety of technologies available with different Readiness Levels and impacts exist

We will need a mix of them and therefore we will need to investigate them all

To meet or come just close to the needed amounts of NET, all technologies will need growth rates even higher compared to PV in the last 10 years

So we need to speed up NOW.....

Setting the Scene

Tiemo Wölken

Member of the European Parliament

Expert Presentation I: Politics, society and negative emission technologies – a scenario and climate policy analysis

Dr. Vicki Duscha

_

Coordinator Business Unit Climate Policy, Fraunhofer Institute for Systems and Innovation Research ISI

NET options and potentials

Category	CDR method	Mitigation Potential (Gt CO ₂ /a)	Cost (\$/t CO ₂)	Status (TRL)
Land-based biological	Soil carbon sequestration in croplands and grasslands	0,6-9,3	45-100	8-9
Land-based biological	Peatland and coastal wetland restoration	0,5-2,1	No data	8-9
Land-based biological	Agroforestry	0,3-9,4	No data	8-9
Land-based biological	Improved forest management	0,1-2,1	No data	8-9
Land-based biological	Afforestation/ reforestation	0,5-10	0-240	8-9
Land-based biological	Biochar	0,3-6,6	10-345	6-7
Chemical	DACCS	5-40	100-300	6
Land-based biological	BECCS	0,5-11	15-400	5-6
Geochemical	Enhanced weathering	2-4	50-200	3-4
Ocean-based biological	Blue carbon management in coastal ecosystems	<1	No data	2-3
Ocean-based biological	Ocean fertilisation	1-3	50-500	1-3
Geochemical	Ocean alkalinity enhancement	1-100	40-260	1-2

Contribute to mitigation pathways in IAMs

Source: based on PCC, AR 6, WG III eport

Storage (and CCS) activities in the EU

orage project	Injection capacity (Mt/a)	Begin of storage
amis (NL)	5	
0 Area (NL)	5-8	2026
rthos (NL)	2.5	Final investment decision is currently being prepared/ Construction meant to start in early 2024
hos (NL)		Stopped
orthern Lights (NO)	1.5-5	2025
neaheia (NO)	20	
na (NO)	5	
ottish Cluster (UK)	12	In development
orthern Endurance rtnership (UK)	27	Mid 2020
king CCS (UK)	10	2030
wett Storage Site K)	20	2027
rost (DK)	3-16	2027
eensand (DK)	8	2025/26
enlille (DK)	10	2025

EU regulatory framework

EU regulatory framework – what's missing

- Strategy for CCUS (on the EU level, on MS level?)
- Targets for (permanent) negative emissions/ industrial carbon removals? targets for CCS injection capacity? trajectories/ interim targets?
- Clear definitions (CCU, biogenic carbon, atmospheric carbon, carbon dioxide removal, permanent storage, non-permanent storage, hard-to-abate sectors, hierarchy for different mitigation options?...)
- Standards for captured and transported carbon (content of CO₂ stream, pressure, ...)
- EU-wide infrastructure planning/ optimization
- Dealing with London Protocol issues
- International cooperation? (EEA, UK, others?)
- In the long-term: viable business models for CCU, CCS, carbon dioxide removal
 - use of negative emission certificates under the EU ETS/ ESR for compliance?
 - handling of CCU under the EU ETS
- Support for infrastructure build up

Expert Presentation II: Life cycle analysis of biochar, BECCS and DACCS and their role in future renewable energy systems

Dr. Saskia Kühnhold-Pospischil

Science Advisor to the Institute Director Fraunhofer Institute for Solar Energy Systems ISE

Negative Emission Technologies will be part of renewable energy systems

Negative Emission Technologies will be part of renewable energy systems

Negative Emission Technologies in renewable energy systems

A system analysis approach with the REMod model

NET development depends on different factors:

- Techno-economic development of NETs
- Availability of green electricity
- Availability of biomass
- Availability of CO₂-Infrastructure
- Regulatory framework for negative emissions
- Demand for CCU

- . . .

REMod: https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html

DAC – potentially providing negative emissions and flexibility

Electricity use in a CO₂-neutral German energy system in an exemplary week in October 2045

Electrolysis and DAC provide flexibility to use excess renewable electricity

Economic evaluation depends on uncertain cost assumptions and VRE availability

Biomass-based NETs in a competition for the use of limited biomass

Exemplary use of biomass in a CO₂-neutral German energy system in 2045

Biomass based NETs are part of a limited sustainable biomass competition.

Standards for evaluating sustainability of biomass and accounting of biomass related GHG emissions are central.

Biomass-based NETs in a competition for the use of limited biomass

Exemplary use of biomass in a CO₂-neutral German energy system in 2045

Biomass is a valuable, limited resource!

→ Smart and efficient use of biomass is needed
→ Cascade use/ Circular Economy
→ Use of residual biomass for BCR e.g.

An estimation from the European Biochar Industry Consortium: "In order to achieve 100 megatons CO_2 by 2040, 19% of the European biomass would be required."

Life Cycle Assessment of BCR, BECCS and DACCS

02

Goal: Through LCA analyses, BCR, BECCS and DACCS can be evaluated in terms of their respective footprints and other categories.

Assumptions:

BECCS:

Grass/ maize silage \rightarrow Anaerobic digestion \rightarrow Biogas (amino washing) \rightarrow Bio methane and CO₂ sink due to sequestration

<u>BCR:</u>

Wood based biomass → Pyrolysis → Biochar sink due to soil application

DACCS:

02

Ventilation \rightarrow Polyethyleneimine sorbent \rightarrow Heating \rightarrow CO₂ sink due to sequestration

Results for 1 kg of CO₂ captured and stored

Comparison – Carbon Footprint

Results for 1 kg of CO₂ captured and stored

Sensitivity Analysis of BCR – Carbon Footprint

Take aways from this talk

Expert Presentation III: Carbon management for climate neutrality - BECCS and PyCCS as key technologies to valorize biogenic residues and waste

Martin Meiller

Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT

Fraunhofer UMSICHT

Carbon management for climate neutrality – BECCS and PyCCS as key technologies to valorize on biogenic residues and waste

Fraunhofer

Environmental, Safety and Energy

Fraunhofer Institute for

Technology UMSICHT

UMSICHT

Martin Meiller, Robert Daschner, Christoph Glasner, Christopher Kick September 27, 2023 | Brussels | Fraunhofer Twin Transition Series

What is BECCS and PyCCS?

Overview and importance

- Bioenergy Carbon Capture and Storage (BECCS)
- Bioenergy Carbon Capture and Utilization (BECCU)

- **Py**rogenic **C**arbon **C**apture and **S**torage **(PyCCS)**
- **Py**rogenic **C**arbon **C**apture and **U**tilization **(PyCCU)**
- Biochar Carbon Removal Technology (BCR)

 \rightarrow C

BECCS Ecosystem

An overview about the BECCS Ecosystem...

Bioenergy is very complex

- Large variety of biomass, biogenic residues and wastes
- Large variety of conversion technologies
- Large variety of products
- Large variety of Carbon Capture technologies
- Large variety of options to utilize and store C or CO₂

Biomass and biogenic residues

Conversions technologies

Carbon Capture

Utilization and Storage

BECCS Ecosystem Utilization and Storage

BECCS & PyCCS: Most advanced pathways so far...

Market relevant activities

Most advanced pathways so far...

Most advanced pathways so far...

Most advanced pathways so far...

PvCCS / Biochar

Most advanced pathways so far...

Our vision Efficient combination of BECCS/U and PyCCS/U

Conclusion and Outlook

Conclusion

- Huge complexity of Bioenergy
- High Technological Readiness Level of BECCS-Ecosystem
- BECCS Ecosystem as a potential "lubricant for cross-sectoral system transitions"

Market entry barriers

Regulatory insecurity in biomass utilization

BECCS

• (Pollutants) emissions regulations \rightarrow Based on concentrations

PyCCS

Application of biochar in soils and different products

Summary of all Expert Presenations

Four key points

 A great variety of NETs exist with permaner potentials R&D funding and support for first-of-its-kiprojects is needed 	ent sink nd NET technology development	> The whole Sustainable value chain of NETs	nole NET value chain need to be considered Sustainable biomass is a valuable and limited resource → smart use > MRVs need to be established
 Regulatory framework is needed for fast NET development Harmonized EU-wide infrastructure planning can help uptake of NET Sink standards are needed to ensure the sink quality 	NET Framework	NET as part of Renewable Energy Systems	➢ NETs need to be considered as part of renewable energy systems → NETs need biomass, heat and/ or produce heat and/ or electricity

Contact information

Peter Schossig Fraunhofer Institute for Solar Energy Systems ISE

peter.schossig@ise.fraunhofer.de

www.ise.fraunhofer.de/en.html

Vicki Duscha Fraunhofer Institute for Systems and Innovation Research ISI

vicki.duscha@isi.fraunhofer.de

www.isi.fraunhofer.de/en.html

Saskia Kühnhold-Pospischil Fraunhofer Institute for Solar Energy Systems ISE

Martin Meiller

Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT

<u>saskia.kuehnhold-</u> pospischil@ise.fraunhofer.de www.ise.fraunhofer.de/en.html

www.umsicht.fraunhofer.de/en.html

martin.meiller@umsicht.fraunhofer.de

Katrin Mögele Fraunhofer EU Office

katrin.moegele@zv.fraunhofer.de

Fraunhofer-Gesellschaft