Green beginnings for End-of-Life Batteries: The potential of reuse, repair and recycling

October 24, 2022
Green beginnings for End-of-Life Batteries: The potential of reuse, repair and recycling
Fraunhofer Twin Transition Series

13:00 p.m. Moderation by Verena Fennemann
Head of Fraunhofer EU-Office Brussels
Welcome and introduction by Prof. Dr. rer. nat. Jens Tübke
Fraunhofer Battery Alliance

13:10 p.m. Setting the scene by Malte Gallée
Patron of the webinar; Member of the European Parliament

13:20 p.m. Expert presentation I “The need for a harmonised LCA approach for the battery value chain”
by Prof. Dr.-Ing. Thilo Bein
Fraunhofer Institute for Structural Durability and System Reliability LBF
Expert presentation II “A question of sustainability and raw material independency: Technological pathways to recycle critical battery materials” by Dr.-Ing. Mareike Partsch
Fraunhofer Institute for Ceramic Technologies and Systems IKTS

13:45 p.m. Discussion

14:00 p.m. End of the event
The Fraunhofer-Gesellschaft

At a glance

Applied research with a focus on key future-relevant technologies and the commercialization of findings in business and industry. A trailblazer and trendsetter in innovative developments.

> 30,000 employees

76 institutes and research units

2.9 billion

2.5 billion

2021

Contract research

Major infrastructure capital expenditure & defense research

One-third is base funding from Germany’s federal and state governments

Two thirds come from industrial contracts and publicly-funded research projects
Welcome and introduction

Prof. Dr. Jens Tübke
Fraunhofer Battery Alliance
Electrochemical Storage - Batteries
EU Battery2030+

Key facts:

If batteries can be made simultaneously more sustainable, safe, ultra high performing, and affordable, they will be true enablers.

Shift towards sustainable and smart mobility; supplying clean, affordable and secure energy; and mobilizing industry for a clean and circular economy.

Batteries are a key technology for battling carbon dioxide emissions from the transport, power, and industry sectors.
But

To meet the expectations placed on batteries in terms of climate protection and resource conservation, circular value creation is required, from the raw materials to the cell, battery, usage phase and recycled materials.
Lithium ion batteries State of the art
Development strategies from the perspective of automotive engineering

- Low cost
- High energy density
- Fast charging capability
- Lifetime
- Environmentally friendly
- Safety

Innovation technologies

High nickel-rich cathodes
- Particle doping/coating

Silicon based anodes
- Advanced materials and specific compositions

Advanced inactive materials
- CNTs, Ultra Thin Separators & Electrolyte Formulations

Cell design
- C2P, Lightweight & Safety Materials

Solid-state technology
- Solid state or hybrid methods with polymer, sulfide or oxide electrolytes
Fraunhofer Battery Research
Battery Alliance

Competence map of Alliance Batteries
Competencies of the 24 member institutes along the entire value chain

- Material & Cell
- Cell production
- System & Integration
- Test & Evaluation
- Simulation
- Recycling & LCA

Markets addressed
- Mobile storage (Electromobility, Heavy Duty, Rail, Aviation)
- Stationary storage
- Powertools/Consumer
Fraunhofer Battery Research
Mapping of Fraunhofer battery competencies within the R&I areas in the SRIA

Area 1
Raw Materials and Recycling
- Raw material characterization, processing
- Recycling processes

Area 2
Advanced Materials and Manufacturing
- Simulation, development, manufacturing of active materials Li, Na, Mg, Zn, ...
- Manufacturing technologies electrodes, stacks, cells, modules, systems, BMS, ...

Area 3
Battery end-uses and operations
- Simulation, monitoring, piloting EV, industrial, stationary

Area 4
Safety and Reliability
- Testing and characterization management

Area 5
Sustainability
- LCA of applications and technologies

Full time equivalents working at Fraunhofer:
- Total of 600 FTE at Fraunhofer working on battery technology development in all SRIA R&I areas
Battery Technology Roadmapping at Fraunhofer

- More efficient extraction processes for raw materials
- New ways to extract lithium (e.g. from sea water)
- Novel cell designs: solid-state batteries (SSB)
- Novel chemistries: Na-ion batteries, Zn batteries, etc.
- Improved production technologies (e.g. wet processing with green solvents, dry processing)
- Improvements in packaging design and technologies (e.g. Cell2Pack)
- Improved battery management systems (BMS)
- Emerging business cases for 2nd life applications
- Battery Passport

- Novel chemistries for LIB:
 - Anodes: Si-rich anodes; Li metal anodes
 - Cathodes: NMCs with higher Ni and Mn contents; NMCAs; LMFPs; sulphur (long term)
 - Solid electrolytes -> solid-state batteries
- Components for novel battery chemistries: Na-ion batteries, Zn batteries, etc.
- Battery Passport

- Strongly increasing demand from BEV and EES
- Electrification of further applications, such as trucks (also long haul), short distance planes, ships, etc.
- Improvement and scale-up of existing recycling processes (hydrometallurgical / pyrometallurgical)
- Novel recycling processes, e.g. “direct recycling”
- Battery Passport

- Research management and foresight

- Raw materials
 - Components
 - Cells
 - Applications
 - Recycling
Setting the Scene

Malte Gallée
Member of the European Parliament
The need for a harmonised LCA approach for the battery value chain
Climate Change
We have to act now

- Global warming
 - Limiting global temperature rise < 2,0 °C is a global challenge
- More and more weather extremes
 - Heavy rain and floods
 - droughts
 - Storms
 - fires

Source: www.deutsches-klima-konsortium.de
Challenge of future vehicles and systems

EU Lawmakers Uphold Ban on New Combustion Engine Cars by 2035

- EPP wanted emissions cut by 90% instead of 100% from 2035
- Lawmakers also vote against amendment for e-fuels loophole

The rise of electric cars could leave us with a big battery waste problem

Car makers, recyclers and tech startups are working to solve the question of how to deal with lithium ion batteries when they wear out.

Nickel mining: the hidden environmental cost of electric cars

The extraction of nickel, mainly mined in Australia, Canada, Indonesia, Russia and the Philippines, comes with significant environmental health costs.
Transforming the European Road Transport System

The Decoupling Concept

- Global resource use has more than tripled since 1970
- Global material demand per capita grew from 7.4 tons in 1970 to 12.2 tons per capita in 2017
- Material productivity started to decline around 2000 and has stagnated in the recent years

Source: Janez Potocnik, Decoupling Growth from Resource Use and Environmental Impact, PIUS-Länderkonferenz 2021
Challenge of future vehicles and systems (e.g. battery)

The **ecological footprint** of a product over the full life-cycle (cradle to cradle) must be considered and evaluated already in the product development process:

- energy- and GWP-balance
- EoL-strategies (recycling, re-use, ...)
- costs (Total Cost of Ownership)

and must be the basis for the **selection of the right technology**.
Challenges for a harmonized assessment of the ecological footprint

- Standardised and comparable (real) data are missing.
- Harmonised methods and tools for affordable (in terms of cost and time) and easy-to-handle assessment of the ecological footprint are needed.
- Strategies and definitions for consistent circular economy approaches (e.g. categories like share of recovered materials, energy efficiency of recycling process ...) are missing.
- Knowledge and skills for LCA and CE are lacking.
- LCA- and circular economy-based solutions are not implemented on a wide scale.
- Communication and acceptance of LCA- and circular economy-based solutions.

Source: 2ZERO SRIA, Cluster 4
Research needs for the battery value chain

Data for comparable and reliable assessments
- Life-cycle inventory (LCI) data base beyond the battery pass
- Monitoring of the ecological footprint over lifetime

Methods and Tools
- Methods and tools for LCSA tailored to the battery value chain
- Social LCA for the battery value chain
- Methods, tools and processes for circular economy approach for the battery value chain → Recycling, Re-Use and Repair
- Development of approaches/methods and tools for system-wide life-cycle and CE strategy modelling

Assessment and demonstration
- Assessment of application scenarios
- Development and demonstration of CE strategies for battery value chain
The Coordinated and Support Action (CSA) TranSensus LCA

Commonly accepted and applied single LCA approach for zero-emission road transport and the battery value chain

- Conceptualize and demonstrate a single, European-wide real-data LCA approach for zero-emission road transport
- Harmonization of methodologies, tools and datasets
- Elaborate an ontology and framework for a European-wide LCI database
- Conceptualize LCI data management and update along the life cycle and along the supply chain
- Upcoming technologies and demands.
- Paving the way for LCA-based product and business development
Decision Making Process
A question of sustainability and raw material independency: Technological pathways to recycle critical battery materials

Dr.-Ing. Mareike Partsch
Fraunhofer Institute for Ceramic Technologies and Systems IKTS
Critical battery materials
Increasing demand and ways to cover that

Significant supplies of nickel, lithium, and cobalt required to cover future scenarios -> Europe will need to develop new recycling capacity

The first generation for electric vehicle batteries will start reaching end-of-life in significant volumes after 2035.

By 2050, recycling can give Europe a major supply source if batteries reach EU recyclers and new recovery technologies are commercialized.

(https://www.eurometaux.eu/metals-clean-energy/)

[Graph showing lithium, nickel, and cobalt demand and supply by year (2020-2050)]

Lithium (kt, LCE)
- 2020: 861 kt
- 2050: 861 kt

Nickel (kt)
- 2020: 384 kt
- 2050: 895 kt

Cobalt (kt)
- 2020: 18.4 kt
- 2050: 96.7 kt

Metal from recycling
- 2020: 17% (Li), 19% (Ni), 8% (Co)
- 2050: 77% (Li), 43% (Ni), 67% (Co)

Metal from domestic ore
- 2020: 83% (Li), 36% (Ni), 10% (Co)
- 2050: 23% (Li), 45% (Ni), 21% (Co)

Metal from imported ore
- 2020: 8% (Li), 10% (Ni), 11% (Co)
- 2050: 21% (Li), 26% (Ni), 11% (Co)

Imported metal
- 2020: 23 kt (Li), 384 kt (Ni), 18.4 kt (Co)
- 2050: 861 kt (Li), 895 kt (Ni), 96.7 kt (Co)

***This does not represent battery-grade lithium, but spodumene derived for the ceramics market
† Today nickel is recycled as part of stainless steel but not as pure nickel***
Efficient use of raw material along the whole value chain
Rethink, Reuse, Repair, Recycle

© Fraunhofer ISI
Battery recycling
Is the circle really closed?

No coherent recycling chain from EoL application to new battery material

No clarity on viability of business models
Disassembly at pack, module and cell level
Key process to efficient recycling

Recovered parts
• Electronics
• Cables
• Modules

Challenges
• Connector removal
• No data about battery condition
• residual charge → safety issues
• Fire hazard

• Housing
• Terminals
• Cell

• Removal of adhesive between cells
• solder joints
• Module SoC sometimes unknown

• Good separation of anode and cathode
• Contamination and mixing of polymer components
• Gas generation HF (from conducting salt)
• Changing compositions and materials
RecyLIB
Direct recycling of lithium-ion batteries

RecyLIB aims to establish sustainable, low-energy and highly efficient manufacturing and recycling chains for lithium-ion batteries.

Six partners from 3 countries: Fraunhofer ISC, ImpulsTec GmbH, Hutchinson, Ghent University, CEPA, BayFOR

Fraunhofer’s contribution

- Cell assembly and testing
- Deagglomeration of black mass
- Material selective separation of black mass
- Regeneration of aged cathode materials

read more:

ERA-MIN has received funding from the European Union’s Horizon 2020 Research and Innovation Programme (Grant agreement No. 101003575 ERA-MIN3)
Recycling and Resynthesis of Cathode Materials
How to bring critical raw materials back into the cycle

Fraunhofer’s contribution

- Further development and adaptation of hydrometallurgical processes for optimized and cost-efficient recovery of Co, Mn, Ni and Li as priority valuable metals
- Recovery of components such as phosphorus, fluorine, etc.
- Use of membrane separation processes, electrochemical processes, leaching, precipitation, selective adsorption and liquid-liquid extraction,
- Purification and recycling of leaching and other chemicals (leaching chemicals, extraction agents, diluents, precipitants), process water and waste water produced
- Complete material balancing across all scale-up capable sub-processes and cost evaluation
- Investigations on masking/complexation or removal of impurities (Cu, Al, and Fe)
Synopsis
Challenges and policy recommendation

Lithium-ion battery storage is an essential component of a future energy economy.

From production to use and recycling: innovative solutions are still needed to save resources and costs --> further need to strengthen research for EoL scenarios of batteries.

Circular economy will need legislative as well as political support, motivation and guideline, e.g.

- Implementation of new Battery Directive
- Establish a harmonized standard for LCA and the supporting data
- Provide legal framework that material flows can be retained in Europe

We need to be fast! Recycling is one crucial part for ensuring material basis for future battery manufacturing!
Discussion

Pose your questions either directly to the speakers or write them in the chat – we will then ask the question for you!
European Learning Lab Battery Cells by Fraunhofer FFB
Webinar series for the battery sector

1. European battery eco-system
 Nov 2, 2022 - 3pm
 - European battery eco-system
 - Pricing
 - Key players & resources along the value chain
 Registration open!

2. Material Cycle of LIB
 Nov 28, 2022 - 1pm
 - Material cycle of LIB
 - Challenges in the production process
 - Recycled materials
 Registration open!

3. Sustainable battery cell production & Digital twin
 Jan 3, 2023 - 1pm
 - Sustainability
 - Innovation
 - Problems of classic LIB production
 - Use of digital twins
 Pre-Registration open!

4. Forecast of the battery value chain
 Mar 27, 2023 - 1pm
 - Employment effects
 - Challenges
 - Political, strategic, economic and social future perspective
 Pre-Registration open!
Fraunhofer Technology Experience

Register now!

From Belgian fries to your personal fork - Biological Transformation in Practice

1 December 2022
12:30 – 15:00 CET

For more information and registration: s.fhg.de/techx
Contact information

Prof. Dr. Jens Tübke
Fraunhofer Battery Alliance

Jens.tuebke@ict.fraunhofer.de
www.batterien.fraunhofer.de/en.html

Prof. Dr.-Ing. Thilo Bein
Fraunhofer Institute for Structural Durability and System Reliability LBF

thilo.bein@lbf.fraunhofer.de
www.lbf.fraunhofer.de/en.html

Dr.-Ing. Mareike Partsch
Fraunhofer Institute for Ceramic Technologies and Systems IKTS

mareike.partsch@ikts.fraunhofer.de
www.ikts.fraunhofer.de/en.html